skip to main content


Search for: All records

Creators/Authors contains: "Li, X. H."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    The superτ-charm facility (STCF) is an electron–positron collider proposed by the Chinese particle physics community. It is designed to operate in a center-of-mass energy range from 2 to 7 GeV with a peak luminosity of 0.5 × 1035cm−2·s−1or higher. The STCF will produce a data sample about a factor of 100 larger than that of the presentτ-charm factory — the BEPCII, providing a unique platform for exploring the asymmetry of matter-antimatter (charge-parity violation), in-depth studies of the internal structure of hadrons and the nature of non-perturbative strong interactions, as well as searching for exotic hadrons and physics beyond the Standard Model. The STCF project in China is under development with an extensive R&D program. This document presents the physics opportunities at the STCF, describes conceptual designs of the STCF detector system, and discusses future plans for detector R&D and physics case studies.

     
    more » « less
    Free, publicly-accessible full text available February 1, 2025
  2. Abstract

    Most arcs show systematic temporal and spatial variations in magmatism with clear shifts in igneous rock compositions between those of the magmatic front (MF) and those in the backarc (BA). It is unclear if similar magmatic polarity is seen for extensional continental arcs. Herein, we use geochemical and isotopic characteristics coupled with zircon U‐Pb geochronology to identify the different magmatic style of the Iran convergent margin, an extensional system that evolved over 100 Myr. Our new and compiled U‐Pb ages indicate that major magmatic episodes for the NE Iran BA occurred at 110–80, 75–50, 50–35, 35–20, and 15–10 Ma. In contrast to NE Iran BA magmatic episodes, compiled data from MF display two main magmatic episodes at 95–75 and 55–5 Ma, indicating more continuous magmatism for the MF than for the BA. We show that Paleogene Iran serves as a useful example of a continental arc under extension. Our data also suggest that there is not a clear relationship between the subduction velocity of Neotethyan Ocean beneath Iran and magmatic activity in Iran. Our results imply that the isotopic compositions of Iran BA igneous rocks do not directly correspond to the changes in tectonic processes or geodynamics, but other parameters such as the composition of lithosphere and melt source(s) should be considered. In addition, changes in subduction zone dynamics and contractional versus extensional tectonic regimes influenced the composition of MF and BA magmatic rocks. These controls diminished the geochemical and isotopic variations between the magmatic front and backarc.

     
    more » « less